
MMBasic V3.X Features Page 1

MMBasic V3.X Features

Version 3.0 introduced a revolutionary change in MMBasic compared to version 2.7B. In addition
to dozens of small improvements and bug fixes version 3.0 also implemented an updated core of the
BASIC interpreter which provides the basis for many significant changes that would have
previously been impossible to implement.
Originally MMBasic was written to emulate the early BASICs like Microsoft's MBASIC. This was
not a problem if you were over 50 and grew up in the days of the Tandy TRS-80 and Commodore 64
as you were used to the languages of that era and their idiosyncrasies. But, with the huge popularity
of MMBasic, it needed to move beyond the days of the TRS-80 to match modern programming
standards.

This has been done with a rewrite of the interpreter core that enables features such as speed
improvements, the removal of line numbers and the addition of labels, user defined
subroutines/functions and more.

Full Screen Editor
An important productivity feature of 3.X is the full screen editor (this is not available in the DOS
version of MMBasic).

The editor is invoked with the EDIT command. If you run it on its own it will automatically start
editing the program currently in memory. If you run it with a file name (eg, EDIT "FILE.DAT") it
will edit that file while leaving the program in memory untouched. This last feature is very handy
for examining data files or editing font files while you are developing a program.

MMBasic V3.X Features Page 2

When you are in the editor the various editing keys will work the way that you would expect. For
example, the Up Arrow key will move up a line, the Delete key will delete a character and so on.
You can quickly move through the text from the beginning to the end using the Home/End and Page
Up/Down keys.
Using the full screen editor makes programming in MMBasic a much more fun experience. You
can run the editor, make your changes and press the F2 key. The program will be saved back to
program memory and automatically run. If it fails with an error you can run the editor again and the
editor will automatically position the cursor at the line that caused the error.
The editor will also work with a vt100 compatible terminal emulator over USB. So, if you are
using the mini Maximite or the UBW32 you can still conveniently edit the program held in
memory. It has been tested with Tera Term and this is the recommended terminal emulation
software. Note that Tera Term must be configured for an 80x36 sized screen.

Line Numbers
Another significant change is that line numbers are now no longer required in your BASIC
programs.
For example:

MMBasic 2.X MMBasic 3.X

...
324 ' GET THE INPUTS
330 IF Q=0 THEN GOTO 700
331 A=A+Q : S=S-Y*Q : C=0
334 GOTO 400
336 ' GET THE SELL STATUS
340 PRINT "DO YOU WISH TO SELL";
341 INPUT Q
345 IF Q<0 THEN GOTO 340
350 A=A-Q : S=S+Y*Q : C=0
400 PRINT
410 PRINT "HOW MANY";
411 INPUT Q
420 IF Q<=S THEN GOTO 324
430 S=S-Q : C=1 : PRINT

...

...
 ' Get the inputs
 GetI: If Q=0 Then GoTo Abort
 A=A+Q : S=S-Y*Q : C=0
 GoTo GetQ

 ' Get the sell status
 GetQ: Print "DO YOU WISH TO SELL";
 Input Q
 IF Q<0 Then GoTo GetQ
 A=A-Q : S=S+Y*Q : C=0
 Print
 Print "HOW MANY";
 Input Q
 IF Q<=S Then GoTo GetI
 S=S-Q : C=1 : Print

...

Removing line numbers makes it much easier to write clear and meaningful programs. You can
indent lines for clarity and the ability to insert blank lines allows you space out the program so that
it is not one solid block of text.

Version 3.X is fully backward compatible with 2.X so you can still use line numbers if you need to
and old programs written for 2.X will run exactly as before.

Labels
Instead of using line numbers as the target for GOTO, GOSUB, etc in version 3.X you can use a
label.

In the above example GetQ is a label. A label is used exactly like a line number but it is much more
useful to anyone who is reading the program. For example:
 GOTO ErrorHandler

MMBasic V3.X Features Page 3

Is more meaningful than:
 GOTO 1290

When used to mark a line the label must be terminated with the colon (:) character. For example:
 ErrorHandler: Print "Error …

You can also mix labels and line numbers.

For example:
 100 ' old style program that uses labels
 200 Label: Print nbr
 400 nbr = nbr + 1
 500 if nbr < 5 GoTo Label

A label has the same specifications as a variable (up to 32 characters including letters, numbers, the
underscore and period). The only caveat is that a label cannot be the same as a command because
that could confuse the interpreter as the colon character (:) is used to both terminate a label and as a
separator between commands.
MMBasic includes a cache which remembers the location of a label in the program and, as a result,
jumping to a label is much faster than jumping to a line number. For that reason labels are preferred
and should be used instead of line numbers.

Defined Subroutines
Defined subroutines are a useful feature to help in organising programs so that they are easy to
modify and read.

A defined subroutine is simply a block of programming code that is contained within a module and
can be called from anywhere within your program. It is the same as if you have added your own
command to the language.
For example, assume that you would like to have the command FLASH added to MMBasic, its job
would be to flash the power light on the Maximite. You could ask the author of the language to add
it or you could define a subroutine like this:

Sub FLASH
 Pin(0) = 1
 Pause 100
 Pin(0) = 0
End Sub

Then, in your program you just use the command FLASH to flash the power LED. For example:
IF A <= B THEN FLASH

If the FLASH subroutine was in program memory you could even try it out at the command
prompt, just like any command in MMBasic.
The definition of the FLASH subroutine can be anywhere in the program but typically it is at the
start or end. If MMBasic runs into the definition while running your program it will simply skip
over it.

MMBasic V3.X Features Page 4

Subroutine Arguments
Defined subroutines can have arguments (sometimes called parameter lists). In the definition of the
subroutine they look like this:

Sub MYSUB (arg1, arg2$, arg3)
 <statements>
 <statements>
End Sub

And when you call the subroutine you can assign values to the arguments. For example:
MYSUB 23, "Cat", 55

Inside the subroutine arg1 will have the value 23, arg2$ the value of "Cat", and so on. The
arguments act like ordinary variables but they exist only within the subroutine and will vanish when
the subroutine ends. You can have variables with the same name in the main program and they will
be different from arguments defined for the subroutine (at the risk of making debugging harder).
When calling a subroutine you can supply less than the required number of values. For example:

MYSUB 23

In that case the missing values will be assumed to be either zero or an empty string. For example,
in the above case arg2$ will be set to "" and arg3 will be set to zero. This allows you to have
optional values and, if the value is not supplied by the caller, you can take some special action.
You can also leave out a value in the middle of the list and the same will happen. For example:

MYSUB 23, , 55

Will result in arg2$ being set to "".

Local Variables
Inside a subroutine you will need to use variables for various tasks. In portable code you do not
want the name you chose for such a variable to clash with a variable of the same name in the main
program.

To this end you can define a variable as LOCAL. For example, this is our FLASH subroutine but
this time we have extended it to take an argument (nbr) that specifies how many times to flash the
LED.

Sub FLASH (nbr)
 Local count
 For count = 1 To nbr
 Pin(0) = 1
 Pause 100
 Pin(0) = 0
 Pause 150
 Next count
End Sub

The counting variable (count) is declared as local which means that (like the argument list) it only
exists within the subroutine and will vanish when the subroutine exits. You can have a variable
called count in your main program and it will be different from the variable count in your
subroutine.
If you do not declare the variable as local it will be created within your program and be visible in
your main program and subroutines, just like a normal variable.

MMBasic V3.X Features Page 5

You can define multiple items with the one LOCAL command. If an item is an array the LOCAL
command will also dimension the array (ie, you do not need the DIM command). For example:

LOCAL NBR, STR$, ARR(10, 10)

You can also use local variables in the target for GOSUBs. For example:
 GOSUB MySub
 ...
MySub:
 LOCAL X, Y
 FOR X = 1 TO ...
 FOR Y = 5 TO ...
 <statements>
 RETURN

The variables X and Y will only be valid until the RETURN statement is reached and will be
different from variables with the same name in the main body of the program.

Defined Functions
MMBasic version 3.2 introduced defined functions. These are similar to defined subroutines with
the main difference being that the function is used to return a value in an expression.

For example, if you wanted a function to select the maximum of two values you could define:
Function Max(a, b)
 If a > b
 Max = a
 Else
 Max = b
 EndIf
End Function

Then you could use it in an expression:
SetPin 1, 1 : SetPin 2, 1
Print "The highest voltage is" Max(Pin(1), Pin(2))

The rules for the argument list in a function are similar to subroutines. The only difference is that
brackets are required around the argument list when you are calling a function (they are optional
when calling a subroutine).
To return a value from the function you assign a value to the function's name within the function. If
the function's name is terminated with a $ the function will return a string, otherwise it will return a
number. Within the function the function's name acts like a standard variable.
As another example, let us say that you need a function to format time in the AM/PM format:

Function MyTime$(hours, minutes)
 Local h
 h = hours
 If hours > 12 Then h = h - 12
 MyTime$ = Str$(h) + ":" + Str$(minutes)
 If hours <= 12 Then
 MyTime$ = MyTime$ + "AM"
 Else
 MyTime$ = MyTime$ + "PM"
 EndIf
End Function

MMBasic V3.X Features Page 6

As you can see, the function name is used as an ordinary local variable inside the subroutine. It is
only when the function returns that the value assigned to MyTime$ is made available to the
expression that called it. This example also illustrates that you can use local variables within
functions just like subroutines.

Passing Arguments by Reference
If you use an ordinary variable (ie, not an expression) as the value when calling a subroutine or a
function, the argument within the subroutine/function will point back to the variable used in the call
and any changes to the argument in your routine will also be made to the supplied variable. This is
called passing arguments by reference.

For example, you might define a subroutine to swap two values, as follows:
Sub Swap a, b
 Local t
 t = a
 a = b
 b = t
End Sub

In your calling program you would use variables for both arguments:
Swap nbr1, nbr2

And the result will be that the values of nbr1 and nbr2 will be swapped.

Unless you need to return a value via the argument you should not use an argument as a general
purpose variable inside a subroutine or function. This is because another user of your routine may
unwittingly use a variable in their call and that variable will be "magically" changed by your
routine. It is much safer to assign the argument to a local variable and manipulate that instead.

Additional Notes
There can be only one END SUB or END FUNCTION for each definition of a subroutine or
function. To exit early from a subroutine (ie, before the END SUB command has been reached)
you can use the EXIT SUB command. This has the same effect as if the program reached the
END SUB statement. Similarly you can use EXIT FUNCTION to exit early from a function.
You cannot use arrays in a subroutine or function's argument list however the caller can use them.
For example, this is a valid way of calling the Swap subroutine (discussed above):

Swap dat(i), dat(I + 1)

This type of construct is often used in sorting arrays.

The use of defined subroutines and functions should reduce the need to add specialised features to
MMBasic. For instance, there have been a few requests to add bit shifting functions to the
language. Now you can do that yourself… this is the right shift function:

Function RShift(nbr, bits)
 If nbr < 0 or bits < 0 THEN ERROR "Invalid argument"
 RShift = nbr\(2^bits)
End Function

You can now use this function as if it is a part of the language:
a = &b11101001
b = RShift(a, 3)

After running this fragment of code the variable b would have the binary value of 11101.

MMBasic V3.X Features Page 7

The defined subroutine and function is intended to be a portable lump of code that you can insert
into any program. This is why the full screen editor has the CTRL-F keys for inserting another file.
The idea is that you can keep your defined routines in a file and whenever you need them you can
quickly insert them using CTRL-F.

So, it would be easy to create a library of bit manipulation functions like that described above and
insert them into any program when needed.

Dynamic Memory Management
The earlier versions of MMBasic for the Maximite family employed a fixed memory layout for the
program, variables and general use. When you ran out of space in one area there was no way to use
the free space in another area.

Version 3.2 introduced Dynamic Memory Management. This dynamically allocates the memory to
individual areas as required with the allocation being made from one single pool of memory. This
pool can be quite large. These are the current sizes:

109KB with the video turned off
100KB with composite video
 83KB with VGA video

Compare this to earlier versions that restricted the amount of memory for programs to 30K.
You can see the difference when you run the MEMORY command. It now lists the various areas
and their use of the general pool:

 13kB (12%) Program (541 lines)
 4kB (3%) 33 Variables
 0kB (0%) General
 91kB (85%) Free

While the overall amount of memory in the PIC32 remains the same this system makes more
efficient use of it. This translates into the ability to run very large programs (greater than 3,000
lines) or to allocate huge arrays with more than 20,000 elements.

